Search results

1 – 10 of 30
Article
Publication date: 4 April 2019

Reyhaneh Shekarian, Sayyed Mahdi Hejazi and Mohammad Sheikhzadeh

Knitted fabrics have been widely used in a wide range of applications such as apparel industry. Since these fabrics are continuously subjected to the long-term tensile stresses or…

Abstract

Purpose

Knitted fabrics have been widely used in a wide range of applications such as apparel industry. Since these fabrics are continuously subjected to the long-term tensile stresses or tensile creep in real conditions, investigation of viscoelastic behavior of sewn knitted fabrics would be important especially at the seamed area. The paper aims to discuss this issue.

Design/methodology/approach

A lockstitch machine was used to produce sewn samples by knitted fabric. Factors such as stitch per inch (SPI), thread tension and thread type were variables of the model. Tensile creep tests under constant load of 200 N were conducted, and creep compliance parameter D(t) of samples was obtained as a response variable. A successive residual method (SRM) was also used to characterize viscoelastic properties of sewn-seamed fabrics.

Findings

The instantaneous elastic responses of the seamed samples were less than those of the neat fabric (fabric with no seam). An increase in sewing thread strength increases the instantaneous elastic response of the sample. SPI and thread tension have an optimum value to increase E0. High tenacity polyester thread, due to its higher elastic modulus, caused a larger E0 than polyester/cotton thread in sewn knitted fabric. Characteristics of seam including sewing thread type, SPI and sewing tension have significant influence on T0. Sewn-seamed fabric by high modulus thread shows less viscous strain T0 than the neat fabric (fabric with no seam). Viscous strain T0 decreases as SPI changes from 8 to 4 and/or 12. SPI and thread tension have an optimum value to increase the viscous strain T0. E1 is the same for optimum seamed fabric and fabric sample but T1 is about two times greater for seamed fabric. Retarded time for creep recovery increases by sewing process but characteristics of seam have significant influence on E1 and T1. All sewn knitted fabric samples used in this study could be described by Burger’s model, which is a Maxwell model paralleled with a Kelvin one.

Originality/value

This paper is going to use a different method named successive residuals to model the creep behavior of seamed knitted fabric. On the whole, this paper paved a way to obtain viscoelastic constants of sewn-seamed knitted fabrics based on different sewing parameters such as the modulus of elasticity of the sewing thread, SPI and sewing thread tension.

Details

International Journal of Clothing Science and Technology, vol. 31 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 3 August 2015

Motahareh Mokhtari Yazdi, Mohammad Sheikhzadeh and Seyed Ehsan Chavoshi

The purpose of this paper is to identify and evaluate the potential cooling contribution provided by a phase change material cooling vest as part of the total heat exchange…

Abstract

Purpose

The purpose of this paper is to identify and evaluate the potential cooling contribution provided by a phase change material cooling vest as part of the total heat exchange mechanism of the body and take in to account the negative side effects of wearing the cooling garments.

Design/methodology/approach

In this study, the three-part system of body-garment-environment has been simulated through the finite element method and the problem of heat exchange between these three parts has been solved with the help of computer modeling.

Findings

The results of this modeling showed that a large percentage of the cooling efficiency of cooling vest was neutralized by the negative effects of the vest that are weight, lack of breathability, and the effects on the thermal conductivity of the skin. Therefore, the net efficiency of the cooling vests resulted in a lower decrease in skin temperature compared to the state that the negative side effects were not included in the model.

Originality/value

Cooling power obtained with the help of cooling garments have been studied in previous studies using either human tests or manikins. But, what has been addressed less in previous studies relates to the negative effects of such equipment on the comfort of body, along with their cooling effect. So it is the first time witch the effect of side effects of such equipments are studied. Also modeling the real performance of cooling garments have not been done yet.

Details

International Journal of Clothing Science and Technology, vol. 27 no. 4
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 31 May 2013

Elham Vatankhah, Mohammad Sheikhzadeh and Mehdi Darvishzadeh

Cloth fell distance is an effective parameter on controlling pick density during weaving process. The purpose of this study is developing a novel, simple and economic system to…

Abstract

Purpose

Cloth fell distance is an effective parameter on controlling pick density during weaving process. The purpose of this study is developing a novel, simple and economic system to measure the cloth fell distance from the front position of the reed in each cycle of weaving process dynamically.

Design/methodology/approach

This novel system consists of optical sensors used to measure difference between time the reed reaches the cloth fell and time the reed reaches the front. To interpret this time difference to cloth fell distance, reed motion equation has been used. The reed motion curve in terms of angular position of the crankshaft can be calculated by mathematical analysis.

Findings

This method combining the electronic components and mechanical mechanism of reed motion measures the cloth fell distance online.

Originality/value

This simple and economic method can be used in all types of weaving machine. High accuracy and high speed processing in comparison to previous reported methods are the most advantages of this new real‐time system.

Details

International Journal of Clothing Science and Technology, vol. 25 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 7 June 2019

Reza Dadsetani, Ghanbar Ali Sheikhzadeh, Mohammad Reza Hajmohammadi and Mohammad Reza Safaei

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded…

Abstract

Purpose

Electronic components’ efficiency is the cornerstone of technology progress. The cooling process used for electronic components plays a main role in their performance. Embedded high-conductivity material and provided microchannel heat sink are two common cooling methods. The former is expensive to implement while the latter needs micro-pump, which consumes energy to circulate the flow. The aim of this study is providing a new configuration and method for improving the performance of electronic components.

Design/methodology/approach

To manage these challenges and improve the cooling efficiency, a novel method named Hybrid is presented here. Each method's performance has been investigated, and the results are widely compared with others. Considering the micro-pump power, the supply of the microchannel flow and the thermal conductivity ratio (thermal conductivity ratio is defined as the ratio of thermal conductivity of high thermal conductivity material to the thermal conductivity of base solid), the maximum disk temperature of each method was evaluated and compared to others.

Findings

The results indicated that the Hybrid method can reduce the maximum disk temperature up to 90 per cent compared to the embedded high thermal conductivity at the same thermal conductivity ratio. Moreover, the Hybrid method further reduces the maximum disk temperature up to 75 per cent compared to the microchannel, at equivalent power consumption.

Originality/value

The information in this research is presented in such a way that designers can choose the desired composition, the limited amount of consumed energy and the high temperature of the component. According to the study of radial-hybrid configuration, the different ratio of microchannel and materials with a high thermal conductivity coefficient in the constant cooling volume was investigated. The goal of the investigation was to decrease the maximum temperature of a plate on constant energy consumption. This aim has been obtained in the radial-hybrid configuration.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 June 2019

Seyed Mohammad Mousavi, Omid Ali Akbari, Ghanbarali Sheikhzadeh, Ali Marzban, Davood Toghraie and Ali J. Chamkha

The purpose of this study is two phase modeling of Water/Cu nanofluid forced convection in different arrangements of elliptical tube banks in a two-dimensional space.

Abstract

Purpose

The purpose of this study is two phase modeling of Water/Cu nanofluid forced convection in different arrangements of elliptical tube banks in a two-dimensional space.

Design/methodology/approach

The arrangements of tube banks have been regarded as equal spacing triangle (ES), equilateral triangle (ET) and the rotated square (RS). The obtained results indicate that, among the investigated arrangements, the RS arrangement has the maximum value of heat transfer with cooling fluid. Also, the changes of Nusselt number and the local friction factor are under the influence of three main factors including volume fraction of slid nanoparticles, the changes of fluid velocity parameters on the curved surface of tube and flow separation after crossing from a specified angle of fluid rotation.

Findings

In Reynolds number of 250 and in all arrangements of the tube banks, the behavior of Nusselt number is almost the same and the separation of flow happens in almost 155-165 degrees from fluid rotation on surface. In RS arrangement, due to the strength of vortexes after fluid separation, better mixture is created and because of this reason, after the separation zone, the level of local Nusselt number graph enhances significantly.

Originality/value

In this research, the laminar and two-phase flow of Water/Cu nanofluid in tube banks with elliptical cross section has been numerically investigated in a two-dimensional space with different longitudinal arrangements. In this study, the effects of using nanofluid, different arrangements of tube banks and the elliptical cross section on heat transfer and cooling fluid flow among the tube banks of heat exchanger have been numerically simulated by using finite volume method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 10 December 2018

Ammar I. Alsabery, Taher Armaghani, Ali J. Chamkha, Muhammad Adil Sadiq and Ishak Hashim

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The…

Abstract

Purpose

The aim of this study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Design/methodology/approach

The current work investigates the problem of mixed convection heat transfer in a double lid-driven square cavity in the presence of magnetic field. The used cavity is filled with water-Al2O3 nanofluid based on Buongiorno’s two-phase model. The bottom horizontal wall is maintained at a constant high temperature and moves to the left/right, while the top horizontal wall is maintained at a constant low temperature and moves to the right/left. The left and right vertical walls are thermally insulated. The dimensionless governing equations are solved numerically using the Galerkin weighted residual finite element method.

Findings

The obtained results show that the heat transfer rate enhances with an increment of Reynolds number or a reduction of Hartmann number. In addition, effects of thermophoresis and Brownian motion play a significant role in the growth of convection heat transfer.

Originality/value

According to above-mentioned studies and to the authors’ best knowledge, there has no study reported the MHD mixed convection heat transfer in a double lid-driven cavity using the two-phase nanofluid model. Thus, the authors of the present study believe that this work is valuable. Therefore, the aim of this comprehensive numerical study is to investigate the effects of two-phase nanofluid model on mixed convection in a double lid-driven square cavity in the presence of a magnetic field. The authors believe that this work is a good contribution for improving the thermal performance and the heat transfer enhancement in some engineering instruments.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 October 2019

Soroush Sadripour, Mohammad Estajloo, Seyed Abdolmehdi Hashemi, Ali J. Chamkha and Mahmoud Abbaszadeh

The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and…

Abstract

Purpose

The purpose of this study is to reduce energy consumption in bakeries. Due to fulfill this demand, quite a few parameters such as energy and exergy efficiency, energy waste and fuel consumption by different traditional flatbreads bakeries (Sangak, Barbari, Taftun and Lavash should be monitored and their roles should not be neglected.

Design/methodology/approach

In the present study, experimental measurements and mathematical modeling are used to scrutinize and investigate the effects of the aforementioned parameters on energy consumption by bakeries.

Findings

The results show that by doing reported methods in this paper, the wasted energy of the walls can be decreased by about 65 per cent; and also, by controlling the combustion reaction to perform with 5 per cent excess air, the wasted energy of excess air declines by about 90 per cent. And finally, the energy and exergy efficiency of bakeries is increased, and as a result, the annual energy consumption of Sangak, Barbari, Taftun and Lavash bakeries diminish about 71, 59, 57 and 40 per cent, respectively.

Originality/value

As evidenced by the literature review, it can be observed that neither numerical studies nor experimental investigations have been conducted about energy and exergy analyses of Iranian machinery traditional flatbread bakeries. It is clear that due to a high preference of Iranians to use the traditional bread and also the popularity of baking this kind of bread in Iran, if it is possible to enhance the traditional oven conditions to decrease the loss of natural gas instead of industrializing the bread baking, the energy consumption in the country can be optimized.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 September 2018

Ammar I. Alsabery, Tahar Tayebi, Ali J. Chamkha and Ishak Hashim

The purpose of this paper is to study problem of conjugate MHD natural convection of Al2O3-water nanofluid in a square cavity with conductive inner block using Buongiorno’s…

Abstract

Purpose

The purpose of this paper is to study problem of conjugate MHD natural convection of Al2O3-water nanofluid in a square cavity with conductive inner block using Buongiorno’s two-phase model numerically.

Design/methodology/approach

An isothermal heater is placed on the left wall of the square cavity, while the right wall is maintained at a constant cold temperature. The horizontal top and bottom walls are kept adiabatic. The boundaries of the annulus are assumed to be impermeable, the fluid within the cavity is a water-based nanofluid having Al2O3 nanoparticles. The Boussinesq approximation is applicable. The governing equations subject to the boundary conditions are solved using the finite difference method.

Findings

Numerical results are presented graphically in the form of streamlines, isotherms and nanoparticles distributions as well as the local and average Nusselt numbers. The results show that the effect of the nanoparticles addition on the average Nusselt number is essential for low Rayleigh, high Hartmann and high values of length ratio when attenuated the convective flow.

Originality/value

According to exist studies and to the authors’ best knowledge, so far, there have been no studies of conjugate natural convection of Al2O3-water nanofluid in a square cavity with a conductive inner block using Buongiorno’s two-phase model with the effect of the magnetic field. Thus, the authors believe that this work is new and valuable. The aim of this study is to investigate the MHD natural convection of Al2O3-water nanofluid in a square cavity with conductive inner block using Buongiorno’s two-phase model.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 31 December 2018

Payam Hooshmand, Mohammad Bahrami, Navid Bagheri, Meysam Jamshidian and Emad Hasani Malekshah

This paper aims to investigate the two-dimensional numerical modeling of fluid flow and heat transfer in a fluid channel.

Abstract

Purpose

This paper aims to investigate the two-dimensional numerical modeling of fluid flow and heat transfer in a fluid channel.

Design/methodology/approach

The channel is filled with the CuO-water nanofluid. The KKL model is used to estimate the dynamic viscosity and considering Brownian motion. On the other hand, the influence of CuO nanoparticles’ shapes on the heat transfer rate is taken account in the simulations. The channel is included with several active pipes with hot and cold temperatures. Furthermore, the external curved and sinusoidal walls have cold and hot temperatures, respectively.

Findings

Three different tilt angles are considered with similar boundary and operating conditions. The Rayleigh numbers, solid volume fraction of CuO nanoparticles in the pure water and the tilt angles are the governing parameters. Different cases studies, such as streamlines, heat transfer rate, local and total entropy generation and heatlines, are analysed under influences of these governing parameters.

Originality/value

The originality of this work is investigation of fluid flow, heat transfer and entropy generation within a nanofluid filled channel using FVM.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 24 October 2018

Hesam Bakhshi, Erfan Khodabandeh, Omidali Akbari, Davood Toghraie, Mohammad Joshaghani and Alireza Rahbari

In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect…

Abstract

Purpose

In the present study, laminar steady flow of nanofluid through a trapezoidal channel is studied by using of finite volume method. The main aim of this paper is to study the effect of changes in geometric parameters, including internal and external dimensions on the behavior of heat transfer and fluid flow. For each parameter, an optimum ratio will be presented.

Design/methodology/approach

The results showed that in a channel cell, changing any geometric parameter may affect the temperature and flow field, even though the volume of the channel is kept constant. For a relatively small hydraulic diameter, microchannels with different angles have a similar dimensionless heat flux, while channels with bigger dimensions show various values of dimensionless heat flux. By increasing the angles of trapezoidal microchannels, dimensionless heat flux per unit of volume increases. As a result, the maximum and minimum heat transfer rate occurs in a trapezoidal microchannel with 75° and 30 internal’s, respectively. In the study of dimensionless heat flux rate with hydraulic diameter variations, an optimum hydraulic diameter (Dh) was observed in which the heat transfer rate per unit volume attains maximum value.

Findings

This optimum state is predicted to happen at a side angle of 75° and hydraulic diameter of 290 µm. In addition, in trapezoidal microchannel with higher aspect ratio, dimensionless heat flux rate is lower. Changing side angles of the channels and pressure drop have the same effect on pressure drop. For a constant pressure drop, if changing the side angles causes an increase in the rectangular area of the channel cross-section and the effect of the sides are not felt by the fluid, then the dimensionless heat flux will increase. By increasing the internal aspect ratio (t_2/t_3), the amount of t_3 decreases, and consequently, the conduction resistance of the hot surface decreases.

Originality/value

The effects of geometry of the microchannel, including internal and external dimensions on the behavior of heat transfer and fluid flow for pressure ranges between 2 and 8 kPa.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 30